Estradiol Stimulates Capillary Formation by Human Endothelial Progenitor Cells Role of Estrogen Receptor- / , Heme Oxygenase 1, and Tyrosine Kinase
نویسندگان
چکیده
Endothelial progenitor cells (EPCs) repair damaged endothelium and promote capillary formation, processes involving receptor tyrosine kinases (RTKs) and heme oxygenase 1 (HO-1). Because estradiol augments vascular repair, we hypothesize that estradiol increases EPC proliferation and capillary formation via RTK activation and induction of HO-1. Physiological concentrations of estradiol (10 nmol/L) increased EPC-induced capillary sprout and lumen formation in matrigel/fibrin/collagen systems. Propyl-pyrazole-triol (PPT; 100 nmol/L; estrogen receptor [ER]agonist), but not diarylpropionitrile (ERagonist), mimicked the stimulatory effects of estradiol on capillary formation, and methyl-piperidino-pyrazole (ERantagonist) abolished the effects of estradiol and PPT. Three different RTK activators (vascular endothelial growth factor, hepatocyte growth factor, and stromal derived growth factor 1) mimicked the capillary-stimulating effects of estradiol and PPT. SU5416 (RTK inhibitor) blocked the stimulatory effects of estradiol and PPT on capillary formation. Estradiol increased HO-1 expression by 2to 3-fold, an effect blocked by SU5416, and PPT mimicked the effects of estradiol on HO-1. The ability of estradiol to enhance capillary formation, increase expression of HO-1, and augment phosphorylation of extracellular signal–regulated kinase 1/2, Akt, and vascular endothelial growth factor receptor 2 was mimicked by its cell-impermeable analog BSA estradiol. Actinomycin (transcription inhibitor) did not alter the effects of estradiol on RTK activity or vascular endothelial growth factor secretion. We conclude that estradiol via ERpromotes EPC-mediated capillary formation by a mechanism that involves nongenomic activation of RTKs and HO-1 activation. Estradiol in particular and ERagonists in general may promote healing of injured vascular beds by promoting EPC activity leading to more rapid endothelial recovery and capillary formation after injury. (Hypertension. 2010;56:00-00.)
منابع مشابه
Estradiol stimulates capillary formation by human endothelial progenitor cells: role of estrogen receptor-{alpha}/{beta}, heme oxygenase 1, and tyrosine kinase.
Endothelial progenitor cells (EPCs) repair damaged endothelium and promote capillary formation, processes involving receptor tyrosine kinases (RTKs) and heme oxygenase 1 (HO-1). Because estradiol augments vascular repair, we hypothesize that estradiol increases EPC proliferation and capillary formation via RTK activation and induction of HO-1. Physiological concentrations of estradiol (10 nmol/...
متن کاملSex Hormones Estradiol Stimulates Capillary Formation by Human Endothelial Progenitor Cells
Endothelial progenitor cells (EPCs) repair damaged endothelium and promote capillary formation, processes involving receptor tyrosine kinases (RTKs) and heme oxygenase 1 (HO-1). Because estradiol augments vascular repair, we hypothesize that estradiol increases EPC proliferation and capillary formation via RTK activation and induction of HO-1. Physiological concentrations of estradiol (10 nmol/...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملنقش سیستم هم اکسیژناژ بر روی رشد تومور ملانوما در موش های نژاد C57Bl6
Background and Objective: Some evidence about the relationship between heme oxygenase and many cancers is available. Heme oxygenase has anti-apoptotic effects and contributes to tumor growth. The aim of this study was to evaluate the effect of heme oxygenase on melanoma tumor cells mitosis and tumor size in C57BL/6 mice. Materials and Methods: B16F10 melanoma cells were injected subcutaneously ...
متن کاملStromal cell–derived factor 1 promotes angiogenesis via a heme oxygenase 1–dependent mechanism
Stromal cell-derived factor 1 (SDF-1) plays a major role in the migration, recruitment, and retention of endothelial progenitor cells to sites of ischemic injury and contributes to neovascularization. We provide direct evidence demonstrating an important role for heme oxygenase 1 (HO-1) in mediating the proangiogenic effects of SDF-1. Nanomolar concentrations of SDF-1 induced HO-1 in endothelia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010